Broad misappropriation of developmental splicing profile by cancer in multiple organs

Author:

Singh ArashdeepORCID,Rajeevan Arati,Gopalan VishakaORCID,Agrawal Piyush,Day Chi-Ping,Hannenhalli Sridhar

Abstract

AbstractOncogenesis mimics key aspects of embryonic development. However, the underlying molecular determinants are not completely understood. Leveraging temporal transcriptomic data during development in multiple human organs, we demonstrate that the ‘embryonic positive (EP)’ alternative splicing events, specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. EP events are associated with key oncogenic processes and their reactivation predicts proliferation rates in cancer cell lines as well as patient survival. EP exons are significantly enriched for nitrosylation and transmembrane domains coordinately regulating splicing in multiple genes involved in intracellular transport and N-linked glycosylation respectively, known critical players in cancer. We infer critical splicing factors (CSF) potentially regulating these EP events and show that CSFs exhibit copy number amplifications in cancer and are upregulated specifically in malignant cells in the tumor microenvironment. Mutational inactivation of CSFs results in decreased EP splicing, further supporting their causal role. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of CSFs in brain and liver, which can be potentially targeted using FDA approved drugs. Our study provides the first comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest novel targets including splicing events, splicing factors, and transcription factors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3