The effects of social environment and the metapleural gland on disease resistance in acorn ants

Author:

Scavetta Joseph T.,Senula Sarah F.,Crowell Daniel R.,Siddique Farzana,Segrest Jennifer F.,Dairo Olseun A.,Nguyen Lindsey U.,Pekora Mathew S.,Kruse Svjetlana VojvodicORCID

Abstract

AbstractEusocial species differ in living conditions when compared to solitary species primarily due to the dense living conditions of genetically related individuals. Consequently, these crowded conditions can induce a high rate of pathogen transmission and pathogen susceptibility. To resist an epidemic, individuals rely on sets of behaviors, known as social immunity, to decrease pathogen transmission among nestmates. Alongside social immunity, ants have a pair of secretory metapleural glands (MG), thought to secrete antimicrobial compounds important for antisepsis, that are believed to be transferred among nestmates by social immune behaviors such as grooming. To investigate the effects of social immunity on pathogen resistance, we performed a series of experiments by inoculating acorn ants Temnothorax curvispinosus with a lethal spore concentration of the entomopathogenic fungus Metarhizium brunneum. After inoculation ant survival was monitored in two environments: solitary and in groups. Additionally, the MG role in pathogen resistance was evaluated for both solitary and grouped living ants, by sealing the MG prior to inoculations. Individuals within a group environment had a higher survival compared to those in a solitary environment, and individuals with sealed glands had significantly decreased survival than ants with non-sealed-MG in both solitary and social environments. We observed the lowest survival for solitary-sealed-MG individuals. Although sealing the MG reduced survival probability, sealing the MG did not remove the benefits of grouped living. We show here that social living plays a crucial role in pathogen resistance and that the MG has an important role in pathogen resistance of individual T. curvispinosus ants. Although important for an individual’s pathogen resistance, our data show that the MG does not play a strong role in social immunity as previously believed. Overall, this study provides insights into mechanisms of social immunity and the role of MG in disease resistance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3