Abstract
AbstractMammals instinctively explore and form mental maps of their spatial environments. Models of cognitive mapping in neuroscience mostly depict map-learning as a process of random or biased diffusion. In practice, however, animals explore spaces using structured, purposeful, sensory-guided actions. Here we test the hypothesis that executing specific exploratory actions is a key strategy for building a cognitive map. Previous work has shown that in arenas with obstacles and a shelter, mice spontaneously learn efficient multi-step escape routes by memorizing allocentric subgoal locations. We thus used threat-evoked escape to probe the relationship between ethological exploratory behavior and allocentric spatial memory. Using closed-loop neural manipulations to interrupt running movements during exploration, we found that blocking runs targeting an obstacle edge abolished subgoal learning. In contrast, blocking other movements while sparing edge-directed runs had no effect on memorizing subgoals. Finally, spatial analyses suggest that the decision to use a subgoal during escape takes into account the mouse’s starting position relative to the layout of the environment. We conclude that mice use an action-driven learning process to identify subgoals and that these subgoals are then integrated into a map-based planning process. We suggest a conceptual framework for spatial learning that is compatible with the successor representation from reinforcement learning and sensorimotor enactivism from cognitive science.
Publisher
Cold Spring Harbor Laboratory
Reference53 articles.
1. Allen Institute for Brain Science. (2015). Allen mouse brain atlas. https://mouse.brain-map.org/static/atlas
2. Movement is necessary for landmark-based navigation;Belg. J. Zool,2004
3. Deictic codes for the embodiment of cognition
4. Vector-based navigation using grid-like representations in artificial agents
5. Mouse strains differ under a simple schedule of operant learning
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献