Growth rate as a modulator of tooth patterning during adaptive radiations

Author:

Sadier AlexaORCID,Anthwal NealORCID,Krause Andrew L.ORCID,Dessalles RenaudORCID,Lake Michael,Bentolila Laurent,Haase RobertORCID,Nieves Natalie,Santana SharleneORCID,Sears KarenORCID

Abstract

The discovery of mechanistic rules that underlie phenotypic variation has been a longstanding goal of evolutionary biology. Developmental processes offer a potential source for such rules because they translate genomic variation into the population-scale phenotypic variation. However, our understanding of developmental rules is based on a handful of well-established model species which hindered identifying rules and investigating their evolution. Recent methodological advances, such as µCT scanning on soft tissues, two-photon imaging and modelling have facilitated the study of how developmental processes shape phenotypic variation in diverse, non-traditional model species. Here, we use the outstanding dental diversity of bats to investigate how the interplay between developmental processes can explain the morphological diversity in teeth. We find that the inhibitory cascade model, which has been used to predict the proportions of teeth and other serial organs, poorly predicts the variation in tooth number and size in bats. Instead, by tinkering with reaction/diffusion processes, we identify jaw growth as a key driver of the phenotypic evolution of tooth number and size critical to the different diets. By studying developmental processes in the context of adaptive evolution, we are able to discover a new developmental rule that explain and predict interspecific variation in serial organ number and proportion.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3