Combining deep learning and automated feature extraction to analyze minirhizotron images: development and validation of a new pipeline

Author:

Bauer Felix M.,Lärm Lena,Morandage Shehan,Lobet GuillaumeORCID,Vanderborght Jan,Vereecken Harry,Schnepf Andrea

Abstract

Root systems of crops play a significant role in agro-ecosystems. The root system is essential for water and nutrient uptake, plant stability, symbiosis with microbes and a good soil structure. Minirhizotrons, consisting of transparent tubes that create windows into the soil, have shown to be effective to non-invasively investigate the root system. Root traits, like root length observed around the tubes of minirhizotron, can therefore be obtained throughout the crop growing season. Analyzing datasets from minirhizotrons using common manual annotation methods, with conventional software tools, are time consuming and labor intensive. Therefore, an objective method for high throughput image analysis that provides data for field root-phenotyping is necessary. In this study we developed a pipeline combining state-of-the-art software tools, using deep neural networks and automated feature extraction. This pipeline consists of two major components and was applied to large root image datasets from minirhizotrons. First, a segmentation by a neural network model, trained with a small image sample is performed. Training and segmentation are done using “Root-Painter”. Then, an automated feature extraction from the segments is carried out by “RhizoVision Explorer”. To validate the results of our automated analysis pipeline, a comparison of root length between manually annotated and automatically processed data was realized with more than 58,000 images. Mainly the results show a high correlation (R=0.81) between manually and automatically determined root lengths. With respect to the processing time, our new pipeline outperforms manual annotation by 98.1 - 99.6 %. Our pipeline,combining state-of-the-art software tools, significantly reduces the processing time for minirhizotron images. Thus, image analysis is no longer the bottle-neck in high-throughput phenotyping approaches.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3