Abstract
AbstractInternal states, including affective or homeostatic states, are important behavioral motivators. The amygdala is a key brain region involved in the regulation of motivated behaviors, yet how distinct internal states are represented in amygdala circuits is unknown. Here, by imaging somatic neural calcium dynamics in freely moving mice, we identify changes in the relative activity levels of two major, non-overlapping populations of principal neurons in the basal nucleus of the amygdala (BA) that predict switches between exploratory and non-exploratory (defensive, anxiety-like) behavioral states across different environments. Moreover, the amygdala widely broadcasts internal state information via several output pathways to larger brain networks, and sensory responses in BA occur independently of behavioral state encoding. Thus, the brain processes external stimuli and internal states in an orthogonal manner, which may facilitate rapid and flexible selection of appropriate, state-dependent behavioral responses.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献