Massively Parallel Profiling of RNA-targeting CRISPR-Cas13d

Author:

Kuo Hung-CheORCID,Prupes Joshua,Chou Chia-WeiORCID,Finkelstein Ilya J.ORCID

Abstract

ABSTRACTType VI CRISPR enzymes cleave target RNAs and are widely used for gene regulation, RNA tracking, and diagnostics. However, a systematic understanding of their RNA binding specificity and cleavage activation is lacking. Here, we describeRNAchip-hybridizedassociation-mappingplatform (RNA-CHAMP), a massively parallel platform that repurposes next-generation DNA sequencing chips to measure the binding affinity for over 10,000 RNA targets containing structural perturbations, mismatches, insertions, and deletions relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d, a compact and widely used RNA nuclease, reveals that it does not require a protospacer flanking sequence (PFS) but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is strongly penalized by mismatches, insertions, and deletions in the distal crRNA-target RNA regions, while alterations in the proximal region inhibit nuclease activity without affecting binding. A biophysical model built from these data reveals that target recognition begins at the distal end of unstructured target RNAs and proceeds to the proximal end. Using this model, we designed a series of partially mismatched guide RNAs that modulate nuclease activity to detect single nucleotide polymorphisms (SNPs) in circulating SARS-CoV-2 variants. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme to improve CRISPR diagnostics andin vivoRNA editing. More broadly, RNA-CHAMP provides a quantitative platform for systematically measuring protein-RNA interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3