Metabolic reprogramming provides a novel approach to overcome resistance to BH3-mimetics in Malignant Pleural Mesothelioma

Author:

Sun Xiao-MingORCID,Miles Gareth J,Powley Ian R,Craxton AndrewORCID,Galavotti Sarah,Chernova Tatyana,Dawson Alan,Nakas Apostolos,Willis Anne EORCID,Cain Kelvin,MacFarlane MarionORCID

Abstract

AbstractMalignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure and highly resistant to chemotherapy, potentially due to upregulated expression of the pro-survival proteins, BCL2/BCL-XL/MCL-1. Using clinically-relevant models of MPM we show that patient-derived primary MPM cell lines andex-vivo3D tumour explants are highly resistant to apoptosis induced by the BCL2/BCL-XL inhibitor, ABT-737. Importantly, we discover that 2-deoxyglucose (2DG), a glycolytic inhibitor, can sensitize MPM cells to ABT-737 and show this correlates with loss of the pro-survival protein, MCL-1. siRNA knockdown of MCL-1 (MCL-1 KD) combined with ABT-737 induced BAX/BAK-dependent, but BIM/PUMA-independent apoptosis, mimicking 2DG/ABT-737 treatment. MCL-1 KD/ABT-737 induced mitochondrial cytochromecrelease and caspase-independent inhibition of mitochondrial respiration. Moreover, we observed a hitherto unreported caspase-dependent cleavage of glycolytic enzymes and subsequent inhibition of glycolysis. 2DG inhibited ERK/STAT3 activity, decreased MCL-1 mRNA and protein levels, with concurrent activation of AKT, which limited loss of MCL-1 protein. However, co-treatment with a specific AKT inhibitor, AZD5363, and 2DG/ABT-737 potently induced cell death and inhibited clonogenic cell survival, while in MPM 3D tumour explants MCL-1 protein expression decreased significantly following 2DG or 2DG/AZD5363 treatment. Notably, a similar synergy was observed in MPM cell lines and MPM 3D tumour explants using ABT-737 in combination with the recently developed MCL-1 inhibitor, S63845. Importantly, our study provides a mechanistic explanation for the chemoresistance of MPM and highlights how this can be overcome by a combination of metabolic reprogramming and/or simultaneous targeting of MCL-1 and BCL-2/BCL-XL using BH3-mimetics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3