Improving the sensitivity of fluorescence-based immunoassays by time-resolved and spatial-resolved measurements

Author:

Kremer Ran,Roth ShiraORCID,Bross Avital,Danielli Amos,Noam YairORCID

Abstract

AbstractDetection of target molecules, such as proteins, antibodies, or specific DNA sequences, is critical in medical laboratory science. Commonly used assays rely on tagging the target molecules with fluorescent probes. These are then fed to high-sensitivity detection systems. Such systems typically consist of a photodetector or camera and use time-resolved measurements that require sophisticated and expensive optics. Magnetic modulation biosensing (MMB) is a novel, fast, and sensitive detection technology that has been used successfully to detect viruses such as Zika and SARS-CoV-2. While this powerful tool is known for its high analytical and clinical sensitivity, the current signal-processing method for detecting the target molecule and estimating its dose is based on time-resolved measurements only.To improve the MMB-system performance, we propose here a novel signal processing algorithm that uses both temporally and spatially resolved measurements. We show that this combination significantly improves the sensitivity of the MMB-based assay. To evaluate the new method statistically, we performed multiple dose responses of Human Interleukin 9 (IL −8) on different days. Compared to standard time-resolved methods, the new algorithm provides a 2-3 fold improvement in detection limit and a 25% improvement in quantitative resolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3