The impact of signal variability on epidemic growth rate estimation from wastewater surveillance data

Author:

Colman EwanORCID,Kao Rowland R.ORCID

Abstract

BackgroundTesting samples of waste water for markers of infectious disease became a widespread method of surveillance during the COVID-19 pandemic. While these data generally correlate well with other indicators of national prevalence, samples that cover localised regions tend to be highly variable over short time scales.MethodsWe introduce a procedure for estimating the realtime growth rate of pathogen prevalence using time series data from wastewater sampling. The number of copies of a target gene found in a sample is modelled as time-dependent random variable whose distribution is estimated using maximum likelihood. The output depends on a hyperparameter that controls the sensitivity to variability in the underlying data. We apply this procedure to data reporting the number of copies of the N1 gene of SARS-CoV-2 collected at water treatment works across Scotland between February 2021 and February 2023.ResultsThe real-time growth rate of the SARS-CoV-2 prevalence is estimated at 121 wastewater sampling sites covering a diverse range of locations and population sizes. We find that the sensitivity of the fitting procedure to natural variability determines its reliability in detecting the early stages of an epidemic wave. Applying the procedure to hospital admissions data, we find that changes in the growth rate are detected an average of 2 days earlier in wastewater than in hospital admissions data.ConclusionWe provide a robust method to generate reliable estimates of epidemic growth from highly variable data. Applying this method to samples collected at wastewater treatment works provides highly responsive situational awareness to inform public health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3