Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease

Author:

Ramirez AnnJosetteORCID,Degenhardt Karl,Astrof SophieORCID

Abstract

SummaryThe remarkable robustness of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about buffering mechanisms underlying the constancy of development. Yet, aberrations in developmental programs can lead to lethal outcomes, exemplified by congenital heart disease (CHD). Defective morphogenesis of the aortic arch is a lethal CHD phenotype common in 22q11 deletion syndrome (22q11DS). Previously, we found that the second heart field (SHF) gives rise to the pharyngeal arch artery (PAA) endothelium. Here, we show that robust PAA development is dependent on both a threshold and an optimum number of SHF-derived endothelial cells (ECs) and that the optimum number is regulated byVEGFR2andTbx1gene dosage. We discovered that when the number of SHF-derived ECs falls below the optimum but remains within the threshold, PAA development is rescued by a compensatory endothelium. To determine the source of compensating endothelium and the mechanisms regulating its recruitment, we usedin totoconfocal imaging to investigate EC connectivity, fate, and gene expression at single-cell and single-molecule resolutions. Our studies demonstrate that the loss of SHF-derived ECs leads to alterations in the pharyngeal tissue microenvironment, resulting in increased synthesis ofVEGFA, eliciting ectopic angiogenesis from the nearby veins but not arteries. We show that this rescuing mechanism is regulated byTbx1, a major 22q11DS disease gene; the absence of a single allele ofTbx1prevents this angiogenic response leading to unpredictable arch artery morphogenesis and lethal CHD inTbx1+/-animals. Together, our work uncovers a novel buffering mechanism underlying the fidelity of arch artery development and provides insights into the pathogenesis of CHD.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Self-repairing symmetry in jellyfish through mechanically driven reorganization

2. Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy

3. Morphogenesis of the Mammalian Aortic Arch Arteries;Front Cell Dev Biol,2022

4. Benjamin, E.J. , Virani, S.S. , Callaway, C.W. , Chamberlain, A.M. , Chang, A.R. , Cheng, S. , Chiuve, S.E. , Cushman, M. , Delling, F.N. , Deo, R. , de Ferranti, S.D. , Ferguson, J.F. , Fornage, M. , Gillespie, C. , Isasi, C.R. , Jiménez, M.C. , Jordan, L.C. , Judd, S.E. , Lackland, D. , Lichtman, J.H. , Lisabeth, L. , Liu, S. , Longenecker, C.T. , Lutsey, P.L. , Mackey, J.S. , Matchar, D.B. , Matsushita, K. , Mussolino, M.E. , Nasir, K. , O’Flaherty, M. , Palaniappan, L.P. , Pandey, A. , Pandey, D.K. , Reeves, M.J. , Ritchey, M.D. , Rodriguez, C.J. , Roth, G.A. , Rosamond, W.D. , Sampson, U.K.A.A. , Satou, G.M. , Shah, S.H. , Spartano, N.L. , Tirschwell, D.L. , Tsao, C.W. , Voeks, J.H. , Willey, J.Z. , Wilkins, J.T. , Wu, J.H.Y. , Alger, H.M. , Wong, S.S. , Muntner, P. , 2018. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association, Circulation, pp. e67–e492.

5. Calmont, A. , Ivins, S. , Van Bueren, K.L. , Papangeli, I. , Kyriakopoulou, V. , Andrews, W.D. , Martin, J.F. , Moon, A.M. , Illingworth, E.A. , Basson, M.A. , Scambler, P.J. , 2009. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm, Development, pp. 3173–3183.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3