Silk Fibroin Particles as Carriers in the Development of All-Natural Hemoglobin-Based Oxygen Carriers (HBOCs)

Author:

Pacheco Marisa OORCID,Lutz Henry MORCID,Armada Jostin,Davies NickolasORCID,Gerzenshtein Isabelle K,Cakley Alaura S,Spiess Bruce DORCID,Stoppel Whitney LORCID

Abstract

AbstractOxygen therapeutics have a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all-natural or semi-synthetic hemoglobin-based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products were removed from the market due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers, where immune responses and circulation times remain a challenge. This work looks to leverage the properties of silk fibroin, a cytocompatible and non-thrombogenic biopolymer, known to entrap protein-based cargo, to engineer a silk fibroin-hemoglobin-based oxygen carrier (sfHBOC). Herein, an all-aqueous solvent evaporation technique was used to form silk fibroin particles with and without hemoglobin to tailor the formulation for specific particle sizes. The encapsulation efficiency and ferrous state of hemoglobin were analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 µg/mL active hemoglobin in certain sfHBOC formulations. The system did not elicit a strong inflammation responsein vitro, demonstrating the potential for this particle system to serve as an injectable HBOC.Table of Contents FigureTable of Contents Figure:In this manuscript, we generate silk fibroin particles using an all-aqueous processing technique starting from silk fibroin polymer systems of differing molecular weights. We analyze the extent to which silk concentration and extraction time affect particle size. Further, we analyze the encapsulation of hemoglobin in the particle system and assess immune activation in macrophage-like cultures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3