Phenotypic drought stress prediction of European beech (Fagus sylvatica) by genomic prediction and remote sensing

Author:

Pfenninger MarkusORCID,Langan Liam,Feldmeyer Barbara,Fussi Barbara,Hoffmann Janik,Granado Renan,Hetzer Jessica,Šeho Muhidin,Mellert Karl-Heinz,Hickler Thomas

Abstract

AbstractCurrent climate change species response models usually not include evolution. We integrated remote sensing with population genomics to improve phenotypic response prediction to drought stress in the key forest tree European beech (Fagus sylvaticaL.). We used whole-genome sequencing of pooled DNA from natural stands along an ecological gradient from humid-cold to warm-dry climate. We phenotyped stands for leaf area index (LAI) and moisture stress index (MSI) for the period 2016-2022. We predicted this data with matching meteorological data and a newly developed genomic population prediction score in a Generalised Linear Model. Model selection showed that addition of genomic prediction decisively increased the explanatory power. We then predicted the response of beech to future climate change under evolutionary adaptation scenarios. A moderate climate change scenario would allow persistence of adapted beech forests, but not worst-case scenarios. Our approach can thus guide mitigation measures, such as allowing natural selection or proactive evolutionary management.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Global carbon budget 2021;Earth System Science Data,2022

2. The direct drivers of recent global anthropogenic biodiversity loss;Science advances,2022

3. Brunet, J. , Fritz, Ö. & Richnau, G . Biodiversity in European beech forests-a review with recommendations for sustainable forest management. Ecological Bulletins 77–94 (2010).

4. Zoologische Forschung in hessischen Naturwaldreservaten– Exemplarische Ergebnisse und Perspektiven;Forstarchiv,2010

5. Elsasser, P. , Altenbrunn, K. , Köthke, M. , Lorenz, M. & Meyerhoff, J . Spatial distribution of forest ecosystem service benefits in Germany: A multiple benefit-transfer model. Forests 12, 169 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3