A malaria parasite phospholipase facilitates efficient asexual blood stage egress

Author:

Ramaprasad AbhinayORCID,Burda Paul-Christian,Koussis Konstantinos,Thomas James A,Pietsch Emma,Calvani Enrica,Howell Steven A,MacRae James IORCID,Snijders Ambrosius P.,Gilberger Tim-Wolf,Blackman Michael JORCID

Abstract

AbstractMalaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of twoPlasmodium falciparumperforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.Author SummaryMalaria kills over half a million people every year worldwide. It is caused by a single-celled parasite calledPlasmodium falciparumthat grows and multiplies within a bounding vacuole, inside red blood cells of the infected individuals. Following each round of multiplication, the infected cell is ruptured in a process known as egress to release a new generation of parasites. Egress is required for the disease to progress and is orchestrated by the parasite. The parasite sends out various molecules to puncture and destroy the membranes of the vacuole and the red blood cell. However, little is known about these molecules. In this work, we set out to identify these molecules by using genetic and proteomics approaches. We screened the molecules the parasite sends out during egress and identified a parasite enzyme called LCAT present in the vacuole. Our experiments found that mutant parasites that were unable to make LCAT clumped together and could not escape the infected cell properly. As a result, we saw a reduction in the rate at which these parasites spread through the red blood cells. Taken together, our findings suggest thatP. falciparumneeds LCAT to efficiently break out of red blood cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3