Improving inversion of model parameters from action potential recordings with kernel methods

Author:

Oslandsbotn Andreas,Cloninger Alexander,Forsch Nickolas

Abstract

AbstractCurrent methods for solving inverse problems in cardiac electrophysiology are limited by their accuracy, scalability, practicality, or a combination of these. In this proof-of-concept study we demonstrate the feasibility of using kernel methods to solve the inverse problem of estimating the parameters of ionic membrane currents from observations of corresponding action potential (AP) traces. In particular, we consider AP traces generated by a cardiac cell action potential model, which mimics those obtained experimentally in measurablein vitrocardiac systems. Using synthetic training data from the 1977 Beeler-Reuter AP model of mammalian ventricular cardiomyocytes, we demonstrate our recently proposed boosted kernel ridge regression (KRR) solver StreaMRAK, which is particularly robust and well-adapted for high-complexity functions. We show that this method is less memory demanding, estimates the model parameters with higher accuracy, and is less exposed to parameter sensitivity issues than existing methods, such as standard KRR solvers and loss-minimization schemes based on nearest-neighbor heuristics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3