Cyclone: an accessible pipeline to analyze, evaluate and optimize multiparametric cytometry data

Author:

Patel Ravi K.,Jaszczak Rebecca G.ORCID,Kwok Im,Carey Nicholas D.,Courau Tristan,Bunis Daniel,Samad Bushra,Avanesyan Lia,Chew Nayvin W.,Stenske Sarah,Jespersen Jillian M.,Publicover Jean,Edwards Austin,Naser Mohammad,Rao Arjun A.,Lupin-Jimenez Leonard,Krummel Matthew F.ORCID,Cooper Stewart,Baron Jody,Combes Alexis J.,Fragiadakis Gabriela K.

Abstract

AbstractIn the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3