The Human Brain Connectome Weighted by the Myelin Content and Total Intra-Axonal Cross-Sectional Area of White Matter Tracts

Author:

Nelson Mark C.ORCID,Royer Jessica,Leppert Ilana R.,Campbell Jennifer S.W.,Schiavi SimonaORCID,Jin Hyerang,Tavakol Shahin,de Wael Reinder VosORCID,Rodriguez-Cruces RaulORCID,Pike G. Bruce,Bernhardt Boris C.ORCID,Daducci AlessandroORCID,Misic Bratislav,Tardif Christine L.

Abstract

ABSTRACTA central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features. Computational models supportin vivoinvestigation of the mechanisms mediating this relationship but currently lack the requisite biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features to assess their potential joint utilization in computational models. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, tractometry-derived networks weighted by either tensor-based metrics or neurite density show no relationship with whole-brain functional connectivity. We conclude that structure-function brain models are likely to be improved by the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content. We anticipate that the proposed microstructure-weighted computational modeling approach will support mechanistic understanding of the structure-function relationship of the human brain.AUTHOR SUMMARYFor computational network models to provide mechanistic links between brain structure and function, they must be informed by networks in which edge weights quantify structural features relevant to brain function. Here, we characterized several weighted structural networks capturing multiscale features of white matter connectivity. We describe these networks in terms of edge weight distribution, variance and network topology, as well as their relationships with each other, edge length and function. Overall, these findings support the joint use of structural networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts in structure-function models. This thorough characterization serves as a benchmark for future investigations of weighted structural brain networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3