Variant-specific Mendelian Risk Prediction Model

Author:

Bae EunchanORCID,Dias Julie-AlexiaORCID,Huang TheodoreORCID,Chen JinboORCID,Parmigiani Giovanni,Rebbeck Timothy R.ORCID,Braun DanielleORCID

Abstract

Many pathogenic sequence variants (PSVs) have been associated with increased risk of cancers. Mendelian risk prediction models use Mendelian laws of inheritance to predict the probability of having a PSV based on family history, as well as specified PSV frequency and penetrance (agespecific probability of developing cancer given genotype). Most existing models assume penetrance is the same for any PSVs in a certain gene. However, for some genes (for example, BRCA1/2), cancer risk does vary by PSV. We propose an extension of Mendelian risk prediction models to relax the assumption that risk is the same for any PSVs in a certain gene by incorporating variant-specific penetrances and illustrating these extensions on two existing Mendelian risk prediction models, BRCAPRO and PanelPRO. Our proposed BRCAPRO-variant and PanelPRO-variant models incorporate variant-specific BRCA1/2 PSVs through the region classifications. Due to the sparsity of the variant information we classify BRCA1/2 PSVs into three regions; the breast cancer clustering region (BCCR), the ovarian cancer clustering region (OCCR), and an other region. Simulations were conducted to evaluate the performance of the proposed BRCAPRO-variant model compared to the existing BRCAPRO model which assumes the penetrance is the same for any PSVs in BRCA1 (and respectively BRCA2). Simulation results showed that the BRCAPRO-variant model was well calibrated to predict region-specific BRCA1/2 carrier status with high discrimination and accuracy on the region-specific level. In addition, we showed that the BRCAPRO-variant model achieved performance gains over the existing risk prediction models in terms of calibration without loss in discrimination and accuracy. We also evaluated the performance of the two proposed models, BRCAPRO-variant and PanelPRO-variant, on a cohort of 1,961 families from the Cancer Genetics Network (CGN). We showed that our proposed models provide region-specific PSV carrier probabilities with high accuracy, while the calibration, discrimination and accuracy of gene-specific PSV carrier probabilities were comparable to the existing gene-specific models. As more variant-specific PSV penetrances become available, we have shown that Mendelian risk prediction models can be extended to integrate the additional information, providing precise variant or region-specific PSV carrier probabilities and improving future cancer risk predictions.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. What’s new in genetic testing for cancer susceptibility;Oncology,2016

2. Cancer Gov. The Genetics of Cancer. National Cancer Institute; 2018, https://www.cancer.gov/about-cancer/causes-prevention/genetics/.

3. Wetterstrand KA . DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute; 2019, http://www.genome.gov/sequencingcostsdata.

4. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer

5. Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women;JCO Precision Oncology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3