Variance Analysis of LC-MS Experimental Factors and Their Impact on Machine Learning

Author:

Rehfeldt Tobias GreisagerORCID,Krawczyk KonradORCID,Echers Simon GregersenORCID,Marcatili PaoloORCID,Palczynski Pawel,Röttger RichardORCID,Schwämmle VeitORCID

Abstract

AbstractBackgroundMachine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data processing pipeline from raw data analysis to end-user predictions and re-scoring. ML models need large-scale datasets for training and re-purposing, which can be obtained from a range of public data repositories. However, applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods, biological systems, and experimental designs.ResultsWe aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variance in public MS repositories. We also examine how these factors affect ML performance and perform a comprehensive transfer learning to evaluate the benefits of current best practice methods in the field for transfer learning.ConclusionsOur findings show significantly higher levels of homogeneity within a project than between projects, which indicates that it’s important to construct datasets most closely resembling future test cases, as transferability is severely limited for unseen datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance compared to a non-pre-trained model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3