Contributions of early and mid-level visual cortex to high-level object categorization

Author:

Kramer Lily E.ORCID,Chen Yi-ChiaORCID,Long BriaORCID,Konkle TaliaORCID,Cohen Marlene R.ORCID

Abstract

AbstractThe complexity of visual features for which neurons are tuned increases from early to late stages of the ventral visual stream. Thus, the standard hypothesis is that high-level functions like object categorization are primarily mediated by higher visual areas because they require more complex image formats that are not evident in early visual processing stages. However, human observers can categorize images as objects or animals or as big or small even when the images preserve only some low- and mid-level features but are rendered unidentifiable (‘texforms’, Long et al., 2018). This observation suggests that even the early visual cortex, in which neurons respond to simple stimulus features, may already encode signals about these more abstract high-level categorical distinctions. We tested this hypothesis by recording from populations of neurons in early and mid-level visual cortical areas while rhesus monkeys viewed texforms and their unaltered source stimuli (simultaneous recordings from areas V1 and V4 in one animal and separate recordings from V1 and V4 in two others). Using recordings from a few dozen neurons, we could decode the real-world size and animacy of both unaltered images and texforms. Furthermore, this neural decoding accuracy across stimuli was related to the ability of human observers to categorize texforms by real-world size and animacy. Our results demonstrate that neuronal populations early in the visual hierarchy contain signals useful for higher-level object perception and suggest that the responses of early visual areas to simple stimulus features display preliminary untangling of higher-level distinctions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3