A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production

Author:

Keeler Shamus P.,Wu Kangyun,Zhang Yong,Mao Dailing,Li Ming,Iberg Courtney A.,Austin Stephen R.,Glaser Samuel A.,Yantis Jennifer,Podgorny Stephanie,Brody Steven L.,Chartock Joshua R.,Han Zhenfu,Byers Derek E.,Romero Arthur G.,Holtzman Michael J.ORCID

Abstract

ABSTRACTCommon respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness ofMAPK13versusMAPK14gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.New and noteworthyThis study describes the discovery of a potent MAPK13-14 inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases (e.g., asthma, COPD, Covid-19, post-viral and allergic respiratory disease) and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Centers for Disease Control and Prevention CDC. Leading causes of death, https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. 2022.

2. World Health Organization WHO. The top 10 causes of death, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

3. Expression of respiratory mucins in fatal status asthmaticus and mild asthma

4. Characterization of airway plugging in fatal asthma

5. The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3