A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes

Author:

Mehta NirajORCID,Meng Yifan,Zare Richard,Kamenetsky-Goldstein Rina,Sattely ElizabethORCID

Abstract

AbstractNumerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A lead example is the >150 Amaryllidaceae alkaloids (AmAs) including galantamine, an FDA-approved treatment for Alzheimer’s disease. We show that while AmAs accumulate to high levels in many tissues in daffodils, biosynthesis is localized to nascent, growing tissue at the base of leaves. A similar trend is found for the production of steroidal alkaloids (e.g. cyclopamine) in corn lily. This model of active biosynthesis enabled elucidation of a complete set of biosynthetic genes for the production of AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodil. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as aboveground tissue develops.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond co-expression: pathway discovery for plant pharmaceuticals;Current Opinion in Biotechnology;2024-08

2. Chemical tools for unpicking plant specialised metabolic pathways;Current Opinion in Plant Biology;2024-08

3. Navigating Amaryllidaceae alkaloids: bridging gaps and charting biosynthetic territories;Journal of Experimental Botany;2024-04-23

4. Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme;Nature Communications;2024-03-07

5. Pathway engineering of plant-derived bioactive compounds in microbes;Engineering Biology for Microbial Biosynthesis of Plant-Derived Bioactive Compounds;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3