Understanding ATP binding to DosS catalytic domain with a short ATP-lid

Author:

Larson Grant,Windsor Peter,Smithwick Elizabeth,Shi Ke,Aihara Hideki,Damodaran Anoop Rama,Bhagi-Damodaran Ambika

Abstract

ABSTRACTDosS is a heme-sensor histidine kinase that responds to redox-active stimuli in mycobacterial environments by triggering dormancy transformation. Sequence comparison of the catalytic ATP-binding (CA) domain of DosS to other well-studied histidine kinases suggests that it possesses a rather short ATP-lid. This feature has been thought to inhibit DosS kinase activity by blocking ATP binding in the absence of interdomain interactions with the dimerization and histidine phospho-transfer (DHp) domain of full-length DosS. Here, we use a combination of computational modeling, structural biology, and biophysical studies to re-examine ATP-binding modalities in DosS’s CA domain. We show that the closed lid conformation observed in protein crystal structures of DosS CA is caused by the presence of a zinc cation in the ATP binding pocket that coordinates with a glutamate residue on the ATP-lid. Furthermore, circular dichroism (CD) studies and comparisons of DosS CA crystal structure with its AlphaFold model and homologous DesK reveal that a key N-box alpha-helix turn of the ATP pocket manifests as a random coil in the zinc-coordinated protein crystal structure. We note that this closed lid conformation and the random-coil transformation of an N-box alpha-helix turn are artifacts arising from the millimolar zinc concentration used in DosS CA crystallization conditions. In contrast, in the absence of zinc, we find that the short ATP-lid of DosS CA has significant conformational flexibility and can bind ATP (Kd= 53 ± 13 μM). We conclude that DosS CA is almost always bound to ATP under physiological conditions (1-5 mM ATP, sub-nanomolar free zinc) in the bacterial environment. Our findings elucidate the conformational adaptability of the short ATP-lid, its relevance to ATP binding in DosS CA and provide insights that extends to 2988 homologous bacterial proteins containing such ATP-lids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3