An Interpretable Bayesian Clustering Approach with Feature Selection for Analyzing Spatially Resolved Transcriptomics Data

Author:

Li Huimin,Jiang Xi,Guo Lei,Xie Yang,Xu Lin,Li Qiwei

Abstract

SummaryRecent breakthroughs in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive molecular characterization at the spot or cellular level while preserving spatial information. Cells are the fundamental building blocks of tissues, organized into distinct yet connected components. Although many non-spatial and spatial clustering approaches have been used to partition the entire region into mutually exclusive spatial domains based on the SRT high-dimensional molecular profile, most require an ad-hoc selection of less interpretable dimensional-reduction techniques. To overcome this challenge, we propose a zero-inflated negative binomial mixture model to cluster spots or cells based on their molecular profiles. To increase interpretability, we employ a feature selection mechanism to provide a low-dimensional summary of the SRT molecular profile in terms of discriminating genes that shed light on the clustering result. We further incorporate the SRT geospatial profileviaa Markov random field prior. We demonstrate how this joint modeling strategy improves clustering accuracy, compared with alternative state-of-the-art approaches, through simulation studies and two real data applications.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. Blondel, V. D. , Guillaume, J.-L. , Lambiotte, R. , and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008, P10008.

2. Boots, B. , Sugihara, K. , Chiu, S. N. , and Okabe, A. (2009). Spatial tessellations: concepts and applications of Voronoi diagrams.

3. Model-based clustering for expression data via a Dirichlet process mixture model;Bayesian inference for gene expression and proteomics,2006

4. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3