PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 2 localizes to the Golgi

Author:

Fuchs PhilippeORCID,Feixes-Prats ElisendaORCID,Arruda PauloORCID,Feitosa-Araújo EliasORCID,Fernie Alisdair R.ORCID,Grefen ChristopherORCID,Lichtenauer SophieORCID,Linka NicoleORCID,de Godoy Maia Ivan,Meyer Andreas J.ORCID,Schilasky Sören,Sweetlove Lee J.ORCID,Wege StefanieORCID,Weber Andreas P.ORCID,Millar A. HarveyORCID,Keech OlivierORCID,Florez Sarasa IgorORCID,Barreto Pedro,Schwarzländer MarkusORCID

Abstract

Mitochondria act as cellular hubs of energy transformation and metabolite conversion in most eukaryotes. Plant mitochondrial electron transport chains are particularly flexible, featuring alternative components, such as ALTERNATIVE NAD(P)H DEHYDROGENASES and ALTERNATIVE OXIDASES (AOXs), that can bypass proton translocation steps. PLANT UNCOUPLING MITOCHONDRIAL PROTEINS (named PUMPs or plant UCPs) have been identified in plants as homologues of mammalian Uncoupling Proteins (UCPs), and their biochemical and physiological roles have been investigated in the context of mitochondrial energy metabolism. To dissect UCP function in Arabidopsis, the two most conserved (UCP1 and UCP2) have been targeted in recent work by combining mutant lines to circumvent potential functional redundancyin vivo. Such approaches rely on the assumption that both proteins reside in the inner mitochondrial membrane as a prerequisite for functional redundancy. Yet, contradicting results have been reported on UCP2 localization in plants. Here we provide evidence that, conversely to UCP1, which is an abundant inner mitochondrial membrane protein, UCP2 localizes to the Golgi rather than to mitochondria. Based on multiple lines of new and prior evidence, we summarize the consensus view that we have reached and provide an example of how open, critical exchange within the research community is able to constructively address ambiguities. Our observations and considerations provide direction to the ongoing discussion about the functions of UCP proteins. They further offer new perspectives for the study of Golgi membrane transport and subcellular targeting principles of membrane proteins. Since 20 to 30 % of genes in plant genomes are predicted to encode transmembrane proteins and the function of most of those proteins has not been experimentally investigated, we highlight the importance of using independent evidence for localization as a prerequisite for understanding physiological function of membrane proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3