Joint representation of molecular networks from multiple species improves gene classification

Author:

Mancuso Christopher AORCID,Johnson Kayla AORCID,Liu RenmingORCID,Krishnan ArjunORCID

Abstract

AbstractNetwork-based machine learning (ML) has the potential for predicting novel genes associated with nearly any health and disease context. However, this approach often uses network information from only the single species under consideration even though networks for most species are noisy and incomplete. While some recent methods have begun addressing this shortcoming by using networks from more than one species, they lack one or more key desirable properties: handling networks from multiple species, incorporating many-to-many orthology information, or generating a network representation that is reusable across different types of and newly-defined prediction tasks. Here, we present GenePlexusZoo, a framework that casts molecular networks from multiple species into a single reusable feature space for network-based ML. We demonstrate that this multi-species network representation improves both gene classification within a single species and knowledge-transfer across species, even in cases where the inter-species correspondence is undetectable based on shared orthologous genes. Thus, GenePlexusZoo enables effectively leveraging the high evolutionary molecular, functional, and phenotypic conservation across species to discover novel genes associated with diverse biological contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3