Phylogeny Recapitulates Learning: Self-Optimization of Genetic Code

Author:

Attie Oliver,Sulkow Brian,Di Chong,Qiu Wei-Gang

Abstract

AbstractLearning algorithms have been proposed as a non-selective mechanism capable of creating complex adaptive systems in life. Evolutionary learning however has not been demonstrated to be a plausible cause for the origin of a specific molecular system. Here we show that genetic codes as optimal as the Standard Genetic Code (SGC) emerge readily by following a molecular analog of the Hebb’s rule (“neurons fire together, wire together”). Specifically, error-minimizing genetic codes are obtained by maximizing the number of physio-chemically similar amino acids assigned to evolutionarily similar codons. Formulating genetic code as a Traveling Salesman Problem (TSP) with amino acids as “cities” and codons as “tour positions” and implemented with a Hopfield neural network, the unsupervised learning algorithm efficiently finds an abundance of genetic codes that are more error-minimizing than SGC. Drawing evidence from molecular phylogenies of contemporary tRNAs and aminoacyl-tRNA synthetases, we show that co-diversification between gene sequences and gene functions, which cumulatively captures functional differences with sequence differences and creates a genomic “memory” of the living environment, provides the biological basis for the Hebbian learning algorithm. Like the Hebb’s rule, the locally acting phylogenetic learning rule, which may simply be stated as increasing phylogenetic divergence for increasing functional difference, could lead to complex and robust life systems. Natural selection, while essential for maintaining gene function, is not necessary to act at system levels. For molecular systems that are self-organizing through phylogenetic learning, the TSP model and its Hopfield network solution offer a promising framework for simulating emerging behavior, forecasting evolutionary trajectories, and designing optimal synthetic systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3