Abstract
AbstractProper evaluation of the ionic structure of biomolecular systems remains challenging in X-ray and cryo-EM techniques but is essential for advancing our understanding of complex structure/activity/solvent relationships. However, numerous studies overestimate the number of Mg2+ in the deposited structures and underrate the importance of stereochemical rules to correctly assign these ions. Herein, we re-evaluate the PDBid 6QNR and 6SJ6 models of the ribosome ionic structure and establish that stereochemical principles should always be considered when evaluating ion binding features, even when K+ anomalous signals are available as it is the case for 6QNR. Assignment errors can result in misleading conceptions of the solvent structure of ribosomes and other RNA systems and should therefore be avoided. Our analysis resulted in a significant decrease of bound Mg2+ ions in the 6QNR structure, suggesting that K+ and not Mg2+ is the prevalent ion in the ribosome 1st solvation shell. We stress that the use of proper stereochemical guidelines is critical for deflating the current Mg2+ bubble witnessed in many ribosome and other RNA structures. Herewith, we would like to draw the attention of the researchers interested in the ionic structure of biomolecular systems on the importance and complementarity of stereochemistry and other ion identification techniques such as those pertaining to the detection of anomalous signals of transition metals and K+. We also stress that for the identification of lighter ions such as Mg2+, Na+, …, stereochemistry coupled with high resolution structures remain the best currently available option.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献