Author:
Wang Zhiyi,Weng Jie,Li Zhongwang,Hou Ruonan,Zhou Lebin,Ye Hua,Chen Ying,Yang Ting,Chen Daqing,Wang Liang,Liu Xiaodong,Shen Xian,Jin Shengwei
Abstract
BackgroundThe COVID-19 virus is an emerging virus rapidly spread worldwide This study aimed to establish an effective diagnostic nomogram for suspected COVID-19 pneumonia patients.METHODSWe used the LASSO aggression and multivariable logistic regression methods to explore the predictive factors associated with COVID-19 pneumonia, and established the diagnostic nomogram for COVID-19 pneumonia using multivariable regression. This diagnostic nomogram was assessed by the internal and external validation data set. Further, we plotted decision curves and clinical impact curve to evaluate the clinical usefulness of this diagnostic nomogram.RESULTSThe predictive factors including the epidemiological history, wedge- shaped or fan-shaped lesion parallel to or near the pleura, bilateral lower lobes, ground glass opacities, crazy paving pattern and white blood cell (WBC) count were contained in the nomogram. In the primary cohort, the C-statistic for predicting the probability of the COVID-19 pneumonia was 0.967, even higher than the C-statistic (0.961) in initial viral nucleic acid nomogram which was established using the univariable regression. The C-statistic was 0.848 in external validation cohort. Good calibration curves were observed for the prediction probability in the internal validation and external validation cohort. The nomogram both performed well in terms of discrimination and calibration. Moreover, decision curve and clinical impact curve were also beneficial for COVID- 19 pneumonia patients.CONCLUSIONOur nomogram can be used to predict COVID-19 pneumonia accurately and favourably.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献