Determining county-level counterfactuals for evaluation of population health interventions: A novel application of K-means cluster analysis

Author:

Strutz Kelly L.,Luo Zhehui,Raffo Jennifer E.,Meghea Cristian I.,Meulen Peggy Vander,Roman Lee Anne

Abstract

AbstractObjectivesEvaluating population health initiatives at the community level necessitates valid counterfactual communities, which includes having similar complexity with respect to population composition, healthcare access, and health determinants. Estimating appropriate county counterfactuals is challenging in states with large inter-county variation. We present and discuss an application of K-means cluster analysis for determining county-level counterfactuals in an evaluation of a county perinatal system of care for Medicaid-insured pregnant women.Materials and MethodsCounties were described using indicators from the American Community Survey, Area Health Resources Files, University of Wisconsin Population Health Institute County Health Rankings, and vital records for Michigan Medicaid-insured births for the year intervention began (or the closest available year). We ran analyses of 1,000 iterations with random starting cluster values for each of a range of number of clusters from 3 to 10 and used standard variability and reliability measures to identify the optimal number of clusters.ResultsOne county was grouped with the intervention county in all solutions for all iterations and thus considered most valid for 1:1 population county comparisons. Two additional counties were frequently grouped with the intervention county. However, no county was ideal for all subpopulation analyses.Practice ImplicationsAlthough the K-means method was successful at identifying a comparison county, concerning intervention-comparison differences remained. This limitation of the method may be specific to this county and the constraints of a within-state study. This method could potentially be more useful when applied to other counties in and outside of Michigan.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3