Disentangling the Independent Contributions of Visual and Conceptual Features to the Spatiotemporal Dynamics of Scene Categorization

Author:

Greene Michelle R.ORCID,Hansen Bruce C.

Abstract

AbstractHuman scene categorization is characterized by its remarkable speed. While many visual and conceptual features have been linked to this ability, significant correlations exist between feature spaces, impeding our ability to determine their relative contributions to scene categorization. Here, we employed a whitening transformation to decorrelate a variety of visual and conceptual features and assess the time course of their unique contributions to scene categorization. Participants (both sexes) viewed 2,250 full-color scene images drawn from 30 different scene categories while having their brain activity measured through 256-channel EEG. We examined the variance explained at each electrode and time point of visual event-related potential (vERP) data from nine different whitened encoding models. These ranged from low-level features obtained from filter outputs to high-level conceptual features requiring human annotation. The amount of category information in the vERPs was assessed through multivariate decoding methods. Behavioral similarity measures were obtained in separate crowdsourced experiments. We found that all nine models together contributed 78% of the variance of human scene similarity assessments and was within the noise ceiling of the vERP data. Low-level models explained earlier vERP variability (88 ms post-image onset), while high-level models explained later variance (169 ms). Critically, only high-level models shared vERP variability with behavior. Taken together, these results suggest that scene categorization is primarily a high-level process, but reliant on previously extracted low-level features.Significance StatementIn a single fixation, we glean enough information to describe a general scene category. Many types of features are associated with scene categories, ranging from low-level properties such as colors and contours, to high-level properties such as objects and attributes. Because these properties are correlated, it is difficult to understand each property’s unique contributions to scene categorization. This work uses a whitening transformation to remove the correlations between features and examines the extent to which each feature contributes to visual event-related potentials (vERPs) over time. We found that low-level visual features contributed first, but were not correlated with categorization behavior. High-level features followed 80 ms later, providing key insights into how the brain makes sense of a complex visual world.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3