Characterizing key attributes of the epidemiology of COVID-19 in China: Model-based estimations

Author:

Ayoub Houssein H.ORCID,Chemaitelly HiamORCID,Mumtaz Ghina RORCID,Seedat Shaheen,Awad Susanne F.ORCID,Makhoul MoniaORCID,Abu-Raddad Laith J.ORCID

Abstract

AbstractBackgroundA novel coronavirus strain, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China in late 2019. The resulting disease, Coronavirus Disease 2019 (COVID-2019), soon became a pandemic. This study aims to characterize key attributes of the epidemiology of this infection in China.MethodsAn age-stratified mathematical model was constructed to describe the transmission dynamics and estimate the age-specific differences in the biological susceptibility to the infection, age-assortativeness in transmission mixing, case fatality rate (CFR), and transition in rate of infectious contacts (and reproduction number R0) following introduction of mass interventions.ResultsThe model estimated the infectious contact rate in early epidemic at 0.59 contacts per day (95% uncertainty interval (UI)=0.48-0.71). Relative to those 60-69 years of age, susceptibility to the infection was only 0.06 in those ≤19 years, 0.34 in 20-29 years, 0.57 in 30-39 years, 0.69 in 40-49 years, 0.79 in 50-59 years, 0.94 in 70-79 years, and 0.88 in ≥80 years. The assortativeness in transmission mixing by age was very limited at 0.004 (95% UI=0.002-0.008). Final CFR was 5.1% (95% UI=4.8-5.4%). R0 rapidly declined from 2.1 (95% UI=1.8-2.4) to 0.06 (95% UI=0.05-0.07) following onset of interventions.ConclusionAge appears to be a principal factor in explaining the patterns of COVID-19 transmission dynamics in China. The biological susceptibility to the infection seems limited among children, intermediate among young to mid-age adults, but high among those >50 years of age. There was no evidence for differential contact mixing by age, consistent with most transmission occurring in households rather than in schools or workplaces.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Lauer, S. A. ; Grantz, K. H. ; Bi, Q. ; Jones, F. K. ; Zheng, Q. ; Meredith, H. R. ; Azman, A. S. ; Reich, N. G. ; Lessler, J. ; The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med 2020.

2. Wu, Z. ; McGoogan, J. M. ; Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020.

3. World Health Organization Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from :https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed on March 10, 2020; 2020.

4. COVID-19 Outbreak Live Update. Available from:https://www.worldometers.info/coronavirus/. Accessed on March 14, 2020. 2020.

5. World Health Organization (WHO), Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed on March 11, 2020. 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3