Multiplex CRISPRi-Cas9 silencing of planktonic and stage-specific biofilm genes in Enterococcus faecalis

Author:

Afonina Irina,Ong June,Chua Jerome,Lu Timothy,Kline Kimberly A.ORCID

Abstract

ABSTRACTEnterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multi-level regulation. Compared to established knockout methodologies, CRISPRi approaches enable rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both non-template and template strand targeting. Since nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust, and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacteria interactions, and inter-species communication.IMPORTANCEEnterococcus faecalis causes multidrug resistant life-threatening infections, and is often co-isolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labour-intensive allelic exchange methods. Built upon streptococcal dCas9, we developed an easily-modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation, antibiotic resistance, and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance, and can be used to perturb pre-formed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. Ecological replacement of Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus faecium

2. The Enterococcus: a model of adaptability to its environment;Clinical microbiology reviews,2019

3. Gilmore, M.S. , The enterococci: pathogenesis, molecular biology, and antibiotic resistance. 2002: Zondervan.

4. Biofilm-associated infection by enterococci

5. Clewell, D.B. , et al., Extrachromosomal and Mobile Elements in Enterococci: Transmission, Maintenance, and Epidemiology, in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, M.S. Gilmore , et al., Editors. 2014: Boston.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Genome Editing: CRISPR Approaches;The CRISPR/Cas Tool Kit for Genome Editing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3