Estimating Probabilities of Success of Clinical Trials for Vaccines and Other Anti-Infective Therapeutics

Author:

Wong Chi Heem,Siah Kien Wei,Lo Andrew W.

Abstract

AbstractA key driver in biopharmaceutical investment decisions is the probability of success of a drug development program. We estimate the probabilities of success (PoS) of clinical trials for vaccines and other anti-infective therapeutics using 43,414 unique triplets of clinical trial, drug, and disease between January 1, 2000, and January 7, 2020, yielding 2,544 vaccine programs and 6,829 non-vaccine programs targeting infectious diseases. The overall estimated PoS for an industry-sponsored vaccine program is 39.6%, and 16.3% for an industry-sponsored anti-infective therapeutic. Among industry-sponsored vaccines programs, only 12 out of 27 disease categories have seen at least one approval, with the most successful being against monkeypox (100%), rotavirus (78.7%), and Japanese encephalitis (67.6%). The three infectious diseases with the highest PoS for industry-sponsored non-vaccine therapeutics are smallpox (100%), CMV (31.8%), and onychomycosis (29.8%). Non-industry-sponsored vaccine and non-vaccine development programs have lower overall PoSs: 6.8% and 8.2%, respectively. Viruses involved in recent outbreaks—MERS, SARS, Ebola, Zika—have had a combined total of only 45 non-vaccine development programs initiated over the past two decades, and no approved therapy to date (Note: our data was obtained just before the COVID-19 outbreak and do not contain information about the programs targeting this disease.) These estimates offer guidance both to biopharma investors as well as to policymakers seeking to identify areas most likely to be undeserved by private-sector engagement and in need of public-sector support.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Abrantes-Metz, R. M. , Adams, C. P. , & Metz, A. (2004). Pharmaceutical Development Phases: A Duration Analysis (No. 274; Bureau of Economics). https://www.ftc.gov/reports/pharmaceutical-development-phases-duration-analysis

2. How the research-based industry approaches vaccine development and establishes priorities;Developments in Biologicals,2002

3. Celgene. (2019, January 31). Celgene Reports Fourth Quarter and Full Year 2018 Operating and Financial Results. Bloomberg. https://www.bloomberg.com/press-releases/2019-01-31/celgene-reports-fourth-quarter-and-full-year-2018-operating-and-financial-results

4. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline

5. Trends in Risks Associated With New Drug Development: Success Rates for Investigational Drugs;Clinical Pharmacology & Therapeutics,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3