The SCF/KIT pathway implements self-organised epithelial patterning by cell movement

Author:

Chuyen Alexandre,Rulquin Charlotte,Thomé Virginie,Clément Raphaël,Kodjabachian LaurentORCID,Pasini Andrea

Abstract

SUMMARYHow individual cell behaviours lead to the emergence of global patterns is poorly understood. In the Xenopus embryonic epidermis, multiciliated cells (MCCs) are born in a random pattern within an inner mesenchymal layer, and subsequently intercalate at regular intervals into an outer epithelial layer. Using both experiments and mathematical modelling, we show that this transition from chaotic to ordered distribution relies on mutual repulsion among motile immature MCCs, and affinity towards outer-layer intercellular junctions. Consistently, ARP2/3-mediated actin remodelling is required for MCC pattern emergence. Using multiple functional approaches, we show that the Kit tyrosine kinase receptor, expressed in MCCs, and its ligand Scf, expressed in outer-layer cells, are both required for regular MCC distribution. While Scf behaves as a potent adhesive cue for MCCs, Kit expression is sufficient to confer order to a disordered heterologous cell population. Our work reveals how a single signalling system can implement self-organised large-scale patterning.Highlights- Immature multiciliated cells transit from a disordered to an ordered pattern- The transition is a self-organising process based on repulsive and affinity movements- ARP2/3-dependent actin remodelling is required for pattern emergence- The SCF/KIT pathway promotes both repulsion and affinity movementseTOC blurbIn developing Xenopus epidermis, immature multiciliated cells (MCCs), initially chaotically distributed within an inner layer, emerge in an orderly pattern among cells of the outer layer. This process involves MCC mutual repulsion and affinity towards outer-layer intercellular junctions. The SCF/KIT signalling pathway promotes both properties to allow regular MCC distribution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3