A Computational Model of Levodopa-Induced Toxicity in Substantia Nigra Pars Compacta in Parkinson’s Disease

Author:

Muddapu Vignayanandam RavindernathORCID,Vijayakumar Karthik,Ramakrishnan Keerthiga,Chakravarthy V SrinivasaORCID

Abstract

ABSTRACTBackgroundParkinson’s disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking traces the cause of PD neurodegeneration to metabolic deficiency. Due to exceptionally high energy demand, SNc neurons exhibit a higher basal metabolic rate and higher oxygen consumption rate, which results in oxidative stress. Recently, we have suggested that the excitotoxic loss of SNc cells might be due to energy deficiency occurring at different levels of neural hierarchy. Levodopa (LDOPA), a precursor of dopamine, which is used as a symptom-relieving treatment for PD, leads to outcomes that are both positive and negative. Several researchers suggested that LDOPA might be harmful to SNc cells due to oxidative stress. The role of LDOPA in the course of PD pathogenesis is still debatable.New MethodWe hypothesize that energy deficiency can lead to LDOPA-induced toxicity (LIT) in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a multiscale computational model of SNc-striatum system, which will help us in understanding the mechanism behind neurodegeneration postulated above and provides insights for developing disease-modifying therapeutics.ResultsIt was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During LDOPA therapy, it was observed that higher LDOPA dosage results in increased loss of somas and terminals in SNc. It was also observed that co-administration of LDOPA and glutathione (antioxidant) evades LDOPA-induced toxicity in SNc neurons.Comparison with Existing MethodsOur proposed multiscale model of SNc-striatum system is first of its kind, where SNc neuron was modelled at biophysical level, and striatal neurons were modelled at spiking level.ConclusionsWe show that our proposed model was able to capture LDOPA-induced toxicity in SNc, caused by energy deficiency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3