Detection of Locomotion Deficit in a Post-Traumatic Syringomyelia Rat Model Using Automated Gait Analysis Technique

Author:

Pukale Dipak D.,Farrag Mahmoud,Leipzig Nic D.ORCID

Abstract

AbstractSyringomyelia (SM) is a spinal cord disorder in which a cyst (syrinx) filled with fluid forms in the spinal cord post-injury/disease, in patients syrinx symptoms include loss of pain and temperature sensation or locomotion deficit. Currently, there are no small animal models and connected tools to help study the functional impacts of SM. The objective of this study was to determine the detectability of subtle locomotion deficits due to syrinx formation/expansion in post-traumatic syringomyelia (PTSM) rat model using the recently reported method of Gait Analysis Instrumentation, and Technology Optimized for Rodents (GAITOR) with Automated Gait Analysis Through Hues and Areas (AGATHA) technique. First videos of the rats were collected while walking in an arena (using GAITOR) followed by extracting meaningful locomotion information from collected videos (using AGATHA protocol. PTSM injured rats demonstrated detectable locomotion deficits in terms of duty factor imbalance, paw placement accuracy, step contact width, stride length, and phase dispersion parameters compared to uninjured rats due to SM. We concluded that this technique could detect mild and subtle locomotion deficits associated with PTSM injury, which also in future work could be used further to monitor locomotion responses after different treatment strategies for SM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3