A conserved Guided Entry of Tail-anchored pathway is involved in the trafficking of tail-anchored membrane proteins in Plasmodium falciparum

Author:

Kumar Tarkeshwar,Maitra Satarupa,Rahman Abdur,Bhattacharjee SouvikORCID

Abstract

AbstractTail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their extreme C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Accordingly, TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of their subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite.SynopsisTail-anchored (TA) proteins, characterized by an absence of N-terminal signal sequence and the presence of a transmembrane domain near the C-terminus, are post-translationally inserted at organellar membranes by the conserved multi-component Guided Entry of TA (GET) pathway. Here, we identified the putative homologs of GET machinery in the human malaria parasite Plasmodium falciparum and revealed their association with a subset of bioinformatically predicted 63 putative TA proteins, thereby validating the functional existence of this trafficking pathway within the apicomplexan parasite.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3