Differential transcriptomic response of Anopheles arabiensis to Plasmodium vivax and Plasmodium falciparum infection

Author:

Tsapi Majoline Tchioffo,Kornobis Etienne,Puchot Nicolas,English Solomon,Proux Caroline,Goupeyou-Youmsi JessyORCID,Sakuntabhai AnavajORCID,Marie-Agnes-Dillies ORCID,Milijaona RandrianarivelojosiaORCID,Girod RomainORCID,Ndiath Mamadou OusmaneORCID,Bourgouin CatherineORCID

Abstract

AbstractPlasmodium vivax malaria is now recognized as the second most dangerous parasitic threat to human health with the regular decrease of Plasmodium falciparum worldwide over recent decades. A very limited numbers of studies address the interaction of P. vivax with its Anopheles mosquito vectors. Those studies were conducted in P. vivax endemic countries with P.vivax local major vectors for which limited genomic and genetic tools are available. Despite the presence of P. vivax in several African countries and increasing reports on its occurrence in many others, there is virtually no data on the molecular responses of Anopheles arabiensis, a major African mosquito vector, to P. vivax, which limits the development of further “mosquito-targeted” interventions aimed at reducing P. vivax transmission. Taking advantage of the situation of Madagascar where P. falciparum, P. vivax and An. arabiensis are present, we explore the molecular responses of An. arabiensis towards these two human malaria parasites. RNA sequencing on RNAs isolated from mosquito midguts dissected at the early stage of infection (24 hours) was performed using mosquitoes fed on the blood of P. vivax and P. falciparum gametocyte carriers in a field station. From a de novo assembly of An. arabiensis midgut total RNA transcriptome, the comparative analysis revealed that a greater number of genes were differentially expressed in the mosquito midgut in response to P. vivax (209) than to P. falciparum (81). Among these, 15 common genes were identified to be significantly expressed in mosquito midgut 24 hours after ingesting P. vivax and P. falciparum gametocytes, including immune responsive genes and genes involved in amino-acid detoxification pathways. Importantly, working with both wild mosquitoes and field circulating parasites, our analysis revealed a strong mosquito genotype by parasite genotype interaction. Our study also identified 51 putative long non-coding RNAs differentially expressed in An. arabiensis mosquito infected midgut. Among these, several mapped to the published An. arabiensis genome at genes coding immune responsive genes such as gambicin 1, leucine-rich repeat containing genes, either on sense or antisense strands.This study constitutes the first comparison of An. arabiensis molecular interaction with P. vivax and P. falciparum, investigating both coding and long non-coding RNAs for the identification of potential transcripts, that could lead to the development of novel approaches to simultaneously block the transmission of vivax and falciparum malaria.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3