Author:
Varma Ratna,Marin-Araujo Alba E.,Rostami Sara,Waddell Thomas K.,Karoubi Golnaz,Haykal Siba
Abstract
AbstractAirway pathologies including cancer, trauma and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial grafts are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9±5.5%) and goblet (2.1±1.4%) cells on a Silk Fibroin-Collagen Vitrigel Membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM grafts demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies reveal SF-CVM integration, maintenance of airway patency, showing 80.8±3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7±2.3% coverage with viable cells, 3 days post-operatively. We demonstrate the utility of bioengineered, hiPSC-derived epithelial grafts for airway repair in a pre-clinical survival model, providing a significant leap for airway reconstruction approaches.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献