Selective recruitment of endoplasmic reticulum-targeted and cytosolic mRNAs into membrane-associated stress granules

Author:

Child Jessica R.ORCID,Chen QiangORCID,Reid David W.,Jagannathan SujathaORCID,Nicchitta Christopher V.ORCID

Abstract

AbstractStress granules (SGs) are membraneless organelles composed of mRNAs and RNA binding proteins which undergo assembly in response to stress-induced inactivation of translation initiation. The biochemical criteria for mRNA recruitment into SGs are largely unknown. In general, SG recruitment is limited to a subpopulation of a given mRNA species and RNA-seq analyses of purified SGs revealed that signal sequence-encoding (i.e. endoplasmic reticulum (ER)-targeted) transcripts are significantly under-represented, consistent with prior reports that ER-localized mRNAs are excluded from SGs. Using translational profiling, cell fractionation, and single molecule mRNA imaging, we examined SG biogenesis during the unfolded protein response (UPR) and report that UPR-elicited SG formation is gene selective. Combined immunofluorescence-smFISH studies demonstrated that UPR-induced mRNA granules co-localized with SG protein markers and were in close physical proximity to or directly associated with the ER membrane. mRNA recruitment into ER-associated SGs required stress-induced translational inhibition, though translational inhibition was not solely predictive of mRNA accumulation in SGs. SG formation in response to UPR activation or arsenite addition was blocked by the transcriptional inhibitors actinomycin D or triptolide, suggesting a functional link between gene transcriptional state and SG biogenesis. These data demonstrate that ER-targeted mRNAs can be recruited into SGs and identify the ER as a subcellular site of SG assembly. On the basis of the transcriptional inhibitor studies, we propose that newly transcribed mRNAs undergoing nuclear export during conditions of suppressed translation initiation are key substrates for SG biogenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3