SEPRES: Sepsis prediction via a clinical data integration system and real-world studies in the intensive care unit

Author:

Chen Qiyu,Li Ranran,Lin ChihChe,Lai Chiming,Chen Dechang,Qu Hongping,Huang Yaling,Lu Wenlian,Tang Yaoqing,Li Lei

Abstract

SummaryBackgroundSepsis is vital in critical care medicine, and early detection and intervention are key to survival. We aimed to establish an early warning system for sepsis based on a data integration system that can be implemented in the intensive care unit (ICU).MethodsWe trained the LightGBM and multilayer perceptron on the open-source database Medical Information Mart for Intensive Care for sepsis prediction. An ensemble sepsis prediction model was established based on the transfer learning and ensemble learning technique on the private dataset of Ruijin Hospital. The Shapley Additive Explanations analysis was applied to present feature importance on the prediction inference. With the development of data-integrating hub to collect and transmit data from different brands of ICU medical devices, the data integration system was established to receive, integrate, standardize, and store the real-time clinical data. In this way, the sepsis prediction model developed in the ICU of the Ruijin Hospital for the real-world study of sepsis early warning on ICU management. The trial was registered with ClinicalTrials.gov (NCT05088850).FindingsOur best early warning model achieved an area under the receiver operating characteristic curve (AUC) of 0·9833 in the task of detecting sepsis in 4-h preceding on the open-source database, while our ensemble model achieved an AUC of 0·9065−0·9436 in the retrospective research from 1−5-h preceding on the private database, and 0·8636−0·8992 in real-time real-world studies using the data integration system in the ICU of the Ruijin Hospital. In the continuous early warning process of patients admitted to the ICU, 22 patients who met the diagnostic criteria for sepsis during hospitalization were predicted as positive cases; 29 patients without sepsis were predicted as negative cases. Additionally, 17 patients were predicted as false-positive cases; in six patients with sepsis during ICU stay, the predicted probabilities at different time nodes were all less than the warning threshold 0·7 and predicted as false-negative cases.InterpretationMachine learning models could allow accurate and real-time inference to detect sepsis onset within 5-h preceding at most with the help of the data integration system. We identified the features such as age, antibiotics, ventilation, and net balance to be important for the sepsis prediction inference. We argue that this system has promising potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention.FundingShanghai Municipal Science and Technology Major Project, the ZHANGJIANG LAB, and the Science and Technology Commission of Shanghai Municipality.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3