Orthogonal translation initiation using the non-canonical initiator tRNA(AAC) alters protein sequence and stability in vivo

Author:

Hutvagner AndrasORCID,Scopelliti DominicORCID,Whelan FionaORCID,Jaschke Paul R.ORCID

Abstract

AbstractBiological engineers seek to have better control and a more complete understanding of the process of translation initiation within cells so that they may produce proteins more efficiently, as well as to create orthogonal translation systems. Previously, initiator tRNA variants have been created that initiate translation from non-AUG start codons, but their orthogonality has never been measured and the detailed characteristics of proteins produced from them have not been well defined. In this study we created an initiator tRNA mutant with anticodon altered to AAC to be complementary to GUU start codons. We deploy this i-tRNA(AAC) into E. coli cells and measure translation initiation efficiency against all possible start codons. Using parallel reaction monitoring targeted mass spectrometry we identify the N-terminal amino acids of i-tRNA(AAC)-initiated reporter proteins and show these proteins have altered stability within cells. We also use structural modeling of the peptide deformylase enzyme interaction with position 1 valine peptides to interrogate a potential mechanism for accumulation of formylated-valine proteins observed by mass spectrometry. Our results demonstrate that mutant initiator tRNAs have potential to initiate translation more orthogonally than the native initiator tRNA but their interactions with cellular formyltransferases and peptide deformylases can be inefficient because of the amino acid they are charged with. Additionally, engineered initiator tRNAs may enable tuning of in vivo protein stability through initiation with non-methionine amino acids that alter their interaction with cellular proteases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3