A hidden integral structure endows Absolute Concentration Robust systems with resilience to dynamical concentration disturbances

Author:

Cappelletti Daniele,Gupta Ankit,Khammash Mustafa

Abstract

AbstractBiochemical systems that express certain chemical species of interest at the same level at any positive equilibrium are called “absolute concentration robust” (ACR). These species behave in a stable, predictable way, in the sense that their expression is robust with respect to sudden changes in the species concentration, regardless the new positive equilibrium reached by the system. Such a property has been proven to be fundamentally important in certain gene regulatory networks and signaling systems. In the present paper, we mathematically prove that a well-known class of ACR systems studied by Shinar and Feinberg in 2010 hides an internal integral structure. This structure confers these systems with a higher degree of robustness that what was previously unknown. In particular, disturbances much more general than sudden changes in the species concentrations can be rejected, and robust perfect adaptation is achieved. Significantly, we show that these properties are maintained when the system is interconnected with other chemical reaction networks. This key feature enables design of insulator devices that are able to buffer the loading effect from downstream systems - a crucial requirement for modular circuit design in synthetic biology.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3