Abstract
AbstractGenetic variation for both resistance and disease tolerance has been described in a range of species infected with bacterial, viral and fungal pathogens. In Drosophila melanogaster, genetic variation in mortality following systemic Drosophila C Virus (DCV) infection has been shown to be driven by large effect polymorphisms in the viral restriction factor pastrel (pst). However, it is unclear if pst impacts variation in DCV titres (i.e. resistance), or if it also contributes to disease tolerance. We investigated systemic infection across a range of DCV challenge doses spanning nine orders of magnitude, in males and females of ten Drosophila Genetic Reference Panel (DGRP) lines carrying either a susceptible (S) or resistant (R) pst allele. Our results uncover among-line variation in fly survival, viral titers, and disease tolerance measured both as the ability to maintain survival (mortality tolerance) and reproduction (fecundity tolerance). We confirm the role of pst in resistance, as fly lines with the resistant (R) pst allele experienced lower viral titers, and we uncover novel effects of pst on host vigor, as flies carrying the R allele exhibited higher survival and fecundity even in the absence of infection. Finally, we found significant variation in the expression of the JAK-STAT ligand upd3 and the epigenetic regulator of JAK-STAT G9a. While G9a has been previously shown to mediate tolerance of DCV infection, we found no correlation between the expression of either upd3 or G9a on fly tolerance or resistance. Our work highlights the importance of both resistance and tolerance in viral defence.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献