RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in Lotus japonicus

Author:

Li XiaolinORCID,Liu Miaoxia,Cai Min,Chiasson DavidORCID,Groth MartinORCID,Heckmann Anne B.,Wang Trevor L.ORCID,Parniske MartinORCID,Downie J. AllanORCID,Xie FangORCID

Abstract

ABSTRACTSymbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). Rhizobium-directed polar growth (RPG) encodes a coiled-coil protein that was identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. A GFP-RPG protein was localized in puncta subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized in similar puncta. RPG co-localized and directly interacted with CERBERUS at the early endosomes (TGN/EE) compartment and near the nuclei in root hairs after rhizobia inoculation. Our study sheds light on that a RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT polarity growth which is driven by nuclear migration.One sentence summaryPuncta localization RPG-CERBERUS protein complex promote polarity growth of ITs driven by nuclear migration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3