A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers

Author:

Matsumoto Noritaka,Okada Kiyotaka

Abstract

It is postulated that the symmetric organization of plant lateral organs is based on two crossed axes, the abaxial–adaxial and the lateral axes. The PRESSED FLOWER (PRS) gene, the expression and function of which are dependent on the lateral axis, is reported in this study. In the prs mutant, growth of the lateral sepals is repressed, and although the size and shape of the abaxial and adaxial sepals are normal, the cell files at the lateral margins are missing. Double-mutant analyses showed that the PRSgene functions independently of the determinations of both floral organ identity and floral meristem size. The PRS gene, encoding a putative transcriptional factor with a homeodomain, was shown to be required for cell proliferation. PRS gene expression is spatially and temporally unique and is expressed in a restricted number of L1 cells at the lateral regions of flower primordia, floral organ primordia, and young leaf primordia. Our study strongly suggests that the PRS gene is involved in the molecular mechanism of lateral axis-dependent development of lateral organs in Arabidopsis.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference26 articles.

1. Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein

2. Initiation patterns of flower and floral organ development in Arabidopsis thaliana.;Bossinger;Development,1996

3. Bowman J.L. (1994) Morphology of the expanded first leaves. in Arabidopsis : An atlas of morphology and development, ed Bowman J.L. (Springer-Verlag, New York, NY), pp 38–39.

4. Genes directing flower development in Arabidopsis.

5. Genetic interactions among floral homeotic genes of Arabidopsis.;Development,1991

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3