Fast, multicolor 3-D imaging of brain organoids with a new single-objective two-photon virtual light-sheet microscope

Author:

Rakotoson Irina,Delhomme Brigitte,Djian Philippe,Deeg Andreas,Brunstein Maia,Seebacher Christian,Uhl Rainer,Ricard Clément,Oheim MartinORCID

Abstract

ABSTRACTHuman inducible pluripotent stem cells (hiPSCs) hold a large potential for disease modeling. hiPSC-derived human astrocyte and neuronal cultures permit investigations of neural signaling pathways with subcellular resolution. Combinatorial cultures, and three-dimensional (3-D) embryonic bodies enlarge the scope of investigations to multi-cellular phenomena. A the highest level of complexity, brain organoids that – in many aspects – recapitulate anatomical and functional features of the developing brain permit the study of developmental and morphological aspects of human disease. An ideal microscope for 3-D tissue imaging at these different scales would combine features from both confocal laser-scanning and light-sheet microscopes: a micrometric optical sectioning capacity and sub-micrometric spatial resolution, a large field of view and high frame rate, and a low degree of invasiveness, i.e., ideally, a better photon efficiency than that of a confocal microscope. In the present work, we describe such an instrument that belongs to the class of two-photon (2P) light-sheet microsocpes. Its particularity is that – unlike existing two- or three-lens designs – it is using a single, low-magnification, high-numerical aperture objective for the generation and scanning of a virtual light sheet. The microscope builds on a modified Nipkow-Petran spinning-disk scheme for achieving wide-field excitation. However, unlike the common Yokogawa design that uses a tandem disk, our concept combines micro lenses, dichroic mirrors and detection pinholes on a single disk. This design, advantageous for 2P excitation circumvents problems arising with the tandem disk from the large wavelength-difference between the infrared excitation light and visible fluorescence. 2P fluorescence excited in by the light sheet is collected by the same objective and imaged onto a fast sCMOS camera. We demonstrate three-dimensional imaging of TO-PRO3-stained embryonic bodies and of brain organoids, under control conditions and after rapid (partial) transparisation with triethanolamine and /ormamide (RTF) and compare the performance of our instrument to that of a confocal microscope having a similar numerical aperture. 2P-virtual light-sheet microscopy permits one order of magnitude faster imaging, affords less photobleaching and permits better depth penetration than a confocal microscope with similar spatial resolution.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Rakotoson, I. Validation d’une approche de microscopie optique pour l’etude morpho-fonctionnelle des corps embryoides et mini-brains issus d’hIPSC, Faculte des Sciences Fondamentales et Biomedicales, Master of Science, Universite Paris Descartes, (2018), 33 pages.

2. The Importance of Non-Neuronal Cell Types in hiPSC-Based Disease Modeling & Drug Screening;Front. Cell Dev. Biol,2017

3. Organoids as an in vitro model of human development and disease

4. Probing human brain evolution and development in organoids. Curr. Op;Cell Biol,2017

5. Cerebral organoids model human brain development and microcephaly

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3