Landscape of X chromosome inactivation across human tissues

Author:

Tukiainen TaruORCID,Villani Alexandra-Chloé,Yen Angela,Rivas Manuel A.,Marshall Jamie L.,Satija Rahul,Aguirre Matt,Gauthier Laura,Fleharty Mark,Kirby Andrew,Cummings Beryl B.,Castel Stephane E.,Karczewski Konrad J.,Aguet François,Byrnes Andrea,Lappalainen Tuuli,Regev Aviv,Ardlie Kristin G.,Hacohen Nir,MacArthur Daniel G.,

Abstract

X chromosome inactivation (XCI) silences the transcription from one of the two X chromosomes in mammalian female cells to balance expression dosage between XX females and XY males. XCI is, however, characteristically incomplete in humans: up to one third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of “escape” from inactivation varying between genes and individuals1,2 (Fig. 1). However, the extent to which XCI is shared between cells and tissues remains poorly characterized3,4, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression5 and phenotypic traits6. Here we report a systematic survey of XCI using a combination of over 5,500 transcriptomes from 449 individuals spanning 29 tissues, and 940 single-cell transcriptomes, integrated with genomic sequence data (Fig. 1). By combining information across these data types we show that XCI at the 683 X-chromosomal genes assessed is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven new escape genes supported by multiple lines of evidence, and demonstrate that escape from XCI results in sex biases in gene expression, thus establishing incomplete XCI as a likely mechanism introducing phenotypic diversity6,7. Overall, this updated catalogue of XCI across human tissues informs our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3