The Rpi-mcq1 resistance gene family recognizes Avr2 of Phytophthora infestans but is distinct from R2

Author:

Aguilera-Galvez Carolina,Chu ZhaohuiORCID,Omy Sumaiya HaqueORCID,Wouters Doret,Gilroy Eleanor M.,Vossen Jack H.ORCID,Visser Richard G.F,Birch Paul,Jones Jonathan D.GORCID,Vleeshouwers Vivianne G.A.AORCID

Abstract

AbstractPotato late blight, which is caused by the destructive oomycete pathogen Phytophthora infestans, is a major threat to global food security. Several nucleotide binding, leucine-rich repeat (NLR) Resistance to P. infestans (Rpi) genes have been introgressed into potato cultivars from wild Solanum species that are native to Mexico, but these were quickly defeated. Positional cloning in Solanum mochiquense, combined with allele mining in Solanum huancabambense, were used to identify a new family of Rpi genes from Peruvian Solanum species. Rpi-mcq1, Rpi-hcb1.1 and Rpi-hcb1.2 confer race-specific resistance to a panel of P. infestans isolates. Effector assays showed that the Rpi-mcq1 family mediates a hypersensitive response upon recognition of the RXLR effector AVR2, which had previously been found to be exclusively recognized by the family of R2 resistance proteins. The Rpi-mcq1 and R2 genes are distinct and reside on chromosome IX and IV, respectively. This is the first report of two unrelated R protein families that recognize the same AVR protein. We anticipate that this likely is a consequence of a geographically separated dynamic co-evolution of R gene families of Solanum with an important effector gene of P. infestans.Author summaryPotato is the largest non-grain staple crop and essential for food security world-wide. However, potato plants are continuously threatened by the notorious oomycete pathogen Phytophthora infestans that causes late blight. This devastating disease has led to the Irish famine more then 150 years ago, and is still a major threat for potato. Resistance against P. infestans can be found in wild relatives of potato, which carry resistance genes that belong to the nucleotide binding site-leucine-rich repeat (NLR) class. Known NLR proteins typically recognize a matching effector from Phytophthora, which leads to a hypersensitive resistance response (HR). For example, R2 from Mexican Solanum species recognizes AVR2 from P. infestans. So far, these R genes exclusively match to one Avr gene. Here, we identified a new class of NLR proteins that are different from R2, but also recognize the same effector AVR2. This new family of NLR occurs in South American Solanum species, and we anticipate that it is likely a product of a geographically separated co-evolution with AVR2. This is the first report of two unrelated R protein families that recognize the same AVR protein.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Phytophthora infestans: the plant (andRgene) destroyer

2. Potato breeding for resistance to blight and virus diseases during the last hundred years;Zeitschrift für Pflanzenzüchtung,1952

3. The Biology of Phytophthora infestans at Its Center of Origin

4. Hawkes JG . The potato: evolution, biodiversity, and genetic resources. United Kindom: Belhaven Press; 1990. 259 p.

5. Geographic distribution of wild potato species

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3